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Chiral glass ordering in the XY spin glass in four
dimensions
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Abstract. The chiral-glass behaviour of the nearest-neighbour random-bondXY spin glass
in four dimensions is studied by Monte Carlo simulations. A chiral-glass transition at
Tcg = 0.90± 0.05 is found by a finite-size scaling analysis of the results. The associated
chiral correlation-length exponent is estimated to beνcg = 0.6±0.1 andηcg ∼ 0.25. The values
for the chiral critical temperature and the exponents are very similar to those recently reported
for the spin-glass transition in this model. The results strongly suggest a simultaneous ordering
of spin and chirality in four dimensions.

1. Introduction

Although it has been known since 1977 [1] that frustrated vector spin systems possess both
reflectional and rotational symmetries, it is only fairly recently that the chiral-glass behaviour
of vector spin glasses has been studied [2–9]. Whereas the continuous rotational symmetry
is associated with the spins, it is the discrete twofold Ising-like reflectional symmetry which
is associated with chirality. Much of the recent work has been motivated by the suggestion
that the chiral-glass transition in vector spin glasses belongs to the same universality class
as the Ising spin-glass transition. This would imply that the spin-glass transition observed
in experiments may, in fact, be ‘chirality driven’ [7]. Consequently, one would have a
chiral-glass phase with broken reflectional symmetry but preserved rotational symmetry.
Recent numerical work by Kawamura [4, 7, 8] in three dimensions (3D) would appear to be
consistent with this picture.

There is now convincing evidence that bothXY [3–6, 10] and Heisenberg [6–8, 11] spin
glasses exhibit conventional spin-glass ordering only at zero temperature for two dimensions
(2D) and 3D. Domain-wall renormalization-group studies suggest chiral ordering for both
XY [5] and Heisenberg [7] spin glasses in 2D also at zero temperature only. However, the
values of the chiral- and spin-glass correlation-length exponents have been found to differ
in both cases. Further evidence for a decoupling of the chiral and phase variables on long
length scales has come from various Monte Carlo studies in 2D [2, 3], including very recent
work using a vortex representation [9].

In 3D the results point to a finite-temperature chiral-glass transition both forXY [4–6]
and Heisenberg [6–8] spin glasses (although the case is far from convincing for the latter).
So it would appear that chiralities and spins have markedly different behaviour in both 2D
and 3D.
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Very recent Monte Carlo simulations in four dimensions suggest a finite-temperature
spin-glass transition for vector spin glasses [12,13]. This would imply that the lower critical
dimensionality for vector spin glasses is less than 4. It is clearly of interest to see whether
the difference in the behaviour of chiralities and spins extends into higher dimensions.

In this paper we present the results from Monte Carlo simulations of the chiral behaviour
of the four dimensional random-bondXY spin glass. Using finite-size scaling and our earlier
results for the spin-glass transition [12], we shall find evidence for a simultaneous ordering
of spin and chirality in four dimensions (4D).

In section 2 we define the model and review the finite-size scaling technique used to
analyse the data. Section 3 gives details about the simulations and the results are presented
and discussed in section 4. The conclusion is given in section 5.

2. The model

The Hamiltonian for the model is given by

H = −
∑
〈i,j〉

Jij cos(θi − θj ) (1)

where 06 θi 6 2π for all planar spinsi and the summation runs over all nearest-neighbour
pairs on a four-dimensional hypercubic lattice withL × L × L × L spins (L = 2, 4 and
6) with full periodic boundary conditions. The interactions,Jij , are independent random
variables selected from a binary±1 distribution. Throughout, the temperature is given in
units of the nearest-neighbour interaction. We recently reported the results concerning the
spin-glass transition for this model [12]. In this paper we concentrate on the chiral-glass
transition.

The local chirality,κα, at a plaquetteα consisting of four spins is defined by the scalar
[2]

κα = 2−3/2
′∑
α

Sgn(Jij ) sin(θi − θj ) (2)

where the summation is performed over a directed (clockwise) closed contour along the
four sides of the plaquette. Clearly, whereasκα = 0 for an isolated unfrustrated plaquette,
it is restricted to the values±1 for frustrated ones. Hence, chirality act as a ‘continuous’
Ising-like quantity. However, as its magnitude fluctuates with the temperature to a certain
extent, we work with a root-mean-square value given by [2]

κ =
√

1

Nd

∑
α

[〈κ2
α〉T]J (3)

where〈· · ·〉T denotes a thermal average, [· · ·]J indicates an average over the disorder and
Nd , the total number of plaquettes for our four-dimensional lattice, is equal to 6L4.

At a chiral-glass transition one expects the chiral-glass susceptibility,χcg, to diverge,
where

χcg = 1

Nd

∑
α,β

[〈κακβ〉2T]J

= Ndq(2)cg (4)

and here the summation is with respect to all plaquettesα andβ.
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The chiral-glass order parameter,q(2)cg , defined above can be written in terms of the
overlap between two replicas 1 and 2, namely

q(2)cg = [〈q2〉T]J (5)

where

q = 1

Nd

∑
α

κ1
ακ

2
α. (6)

In order to improve the analogy with Ising spins, we follow Kawamura [2] and work in the
simulations with the reduced chiral-glass susceptibility

χ̃cg = χcg/κ
4. (7)

Another key quantity studied in the simulations is the dimensionless Binder parameter
defined by [14]

gcg(L, T ) = 1

2

[
3− q(4)cg

(q
(2)
cg )2

]
(8)

and here

q(4)cg = [〈q4〉T]J . (9)

The Binder parameter is expected to scale as [14]

gcg(L, T ) = gcg(L
1/νcg(T − Tcg)) (10)

whereTcg andνcg are the chiral-glass critical temperature and correlation-length exponent,
respectively. The value ofTcg can be located by using the fact that the scaling function,
gcg, and, hence, alsogcg are independent ofL at the transition temperature. The chiral-glass
correlation-length exponent then follows from a one-parameter scaling fit of the data for
gcg.

The finite-size scaling form for the reduced chiral-glass susceptibility is given by

χ̃cg(L, T ) = L2−ηcgχ̃cg(L
1/νcg(T − Tcg)). (11)

Hereηcg is the chiral critical-point decay exponent and̃χcg is the scaling function.
The finite-size scaling form for the analogous spin-glass quantities can be found in [12].

3. Simulations

We now discuss the computer simulations (Jain [12] should be consulted for further technical
details). In order to ensure that equilibrium has been achieved in the simulations, we use
the technique of Bhatt and Young [14] whereby chiral-glass correlations(q(2)cg and q(4)cg )

computed from two replicas at the same time are required to agree with those from one
replica at two different times.

At low temperatures the chiral degrees of freedom were more difficult to equilibrate
than their spin counterparts, requiring approximately twice as many Monte Carlo steps. As
a result, the lowest temperatures studied wereT = 0.8 (L = 6), 0.7 (L = 4) and 0.3
(L = 2). We took disorder averages over many pairs of independent samples: 100∼ 120
(L = 6), 100 ∼ 250 (L = 4) and 250∼ 700 (L = 2) for each temperature. Most of
the computational time (about 200 h of CPU time on a Cray J932) was taken up by the
simulations forL = 6. (The processors of the Cray J932 are roughly only half the speed of
those of the Cray YMP.) It is estimated that an additional 1000 h of CPU time would be
required to obtain reliable data on a larger lattice such asL = 8. All computational studies
performed to-date, including the present one, on four-dimensional spin glasses have been
restricted to small lattices withL 6 6 [12–14].
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Figure 1. A plot of the reduced chiral-glass susceptibility,̃χcg, against the temperature for
L = 2, 4 and 6 (see equations (4) and (7) in the text). The curves are just to guide the eye.

4. Results

Figure 1 shows a plot of the reduced chiral-glass susceptibility against temperature for the
three different lattices considered in this work. The statistical error bars have been estimated
from the sample-to-sample fluctuations and, in most cases, are smaller than the size of the
data points.

We see that the value of̃χcg remains quite low untilT ≈ 1.0 and then increases rapidly
with the system size. In fact, whereas for low temperaturesχ̃cg is an increasing function of
L, for higher temperatures it appears to actually decrease with increasingL. This suggests
that the scaling regime is probably quite narrow. A very similar behaviour was recently
found by Kawamura [4] in 3D.

In figure 2(a) we show a plot ofgcg against the temperature for 0.4 6 T 6 1.5. The
behaviour of the Binder parameter for high temperaturesT > 1.0 indicates a disordered
chiral phase. ForT 6 1.0 there is a sharp increase ingcg, indicating a build up of chiral
correlations. The increase is more noticeable for the larger lattices. We note that for
T > 1.0 gcg assumes negative values. A negative Binder parameter has also been seen
for bothXY [4] and Heisenberg [8] spin glasses in 3D. This feature would appear to be a
consequence of the fact thatκα = 0 on unfrustrated plaquettes even in theorderedstate.

Figure 2(b) displays on a much expanded scale the data in figure 2(a) in the vicinity
of the important temperature region(0.8 6 T 6 1.0). We see that the curves appear to
intersect atTcg ≈ 0.9. Furthermore, belowTcg the values corresponding toL = 6 are
consistently above those forL = 4 and the curves clearly splay out. We estimate the
chiral-glass transition temperature to beTcg = 0.90± 0.05. This value is very close to the
spin-glass transition temperature(Tsg = 0.95± 0.15) we recently reported for this model
[12]. Our conclusion is based on the results for small lattices and it is highly desirable to
obtain additional data for larger lattices to confirm our findings.

Further evidence for a finite-temperature transition comes from a scaling plot of the
Binder parameter. By varying the value ofνcg and considering values 0.856 Tcg 6 0.95,
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Figure 2. (a) A plot of the Binder parametergcg against the temperature forL = 2, 4 and
6. (b) Same as in (a) but on a much expanded scale around the interesting temperature region
(T ≈ 0.9). The curves are just to guide the eye.

we estimate the chiral correlation-length exponent to beνcg = 0.6 ± 0.1. It should be
noted that the error bar quoted here is simply an estimate that demarcates the range of
values beyond which the data do not scale well. Figure 3 shows the data forgcg against
L1/νcg(T − Tcg) with Tcg = 0.90 andνcg = 0.6. This scaling plot is far better than the
corresponding plot forgsg (see figure 4 in [12]) and the data (including those forL = 2)
would appear to scale particularly well nearTcg. Once again, the value ofνcg would appear
to be very similar to that ofνsg= 0.70± 0.10 [12].

We have appreciable uncertainty in the values of bothTcg and νcg. Furthermore, the
increase in the reduced chiral-glass susceptibility forT 6 1.0 is extremely sharp. As
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Figure 3. A scaling plot of the Binder parametergcg versusL1/0.6(T − 0.9). The curve is just
a guide to the eye.

Figure 4. A scaling plot ofχ̃cg/L
2−ηcg againstL1/νcg(T − Tcg) with Tcg = 0.85, νcg = 0.8 and

ηcg = 0.25 (see equation (11) and the text). The curve is just a guide to the eye.

a consequence, the critical region is very narrow. To obtain an estimate for the decay
exponent,ηcg, we tried various different possible values ofTcg and νcg. The best such
scaling plot is shown in figure 4 where we displaỹχcg/L

2−ηcg againstL1/νcg(T − Tcg) with
Tcg = 0.85, νcg = 0.8 andηcg = 0.25.
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Clearly, theχ̃cg data forL = 2 do not scale all that well, especially for the higher
temperatures. Nevertheless, we note that our estimate forηcg is not incompatible with the
value forηsg found earlier [12].

5. Conclusion

To conclude, we have presented the results of a Monte Carlo simulation of the chiral-glass
behaviour of the four-dimensional random-bondXY spin glass on small lattices(L 6 6).
By means of a finite-size scaling analysis of the data, we have estimated both the chiral
transition temperature and the critical exponents. The chiral-glass values are very similar to
their spin-glass counterparts for this model (Tcg ≈ Tsg, νcg ≈ νsg andηcg ≈ ηsg). Hence, our
results strongly suggest a simultaneous ordering of spin and chirality in four dimensions.

Further data on larger lattices (L > 6) is required to confirm both the transition
temperature and the critical exponents.
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